Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cureus ; 14(3): e22847, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1780250

ABSTRACT

Background Computed tomography (CT) scans and CT severity scores (CTSS) are widely used to assess the severity and prognosis in coronavirus disease 2019 (COVID-19). CTSS has performed well as a predictor in differentiating severe from non-severe cases. However, it is not known if CTSS performs similarly in hospitalized severe cases with hypoxia at admission. Methods We conducted a retrospective comparative study at a COVID-care center from Western India between 25th April and 31st May 2021, enrolling all consecutive severe COVID-19 patients with hypoxemia (peripheral oxygen saturation < 94%). Neutrophil-lymphocyte ratio (NLR), C-reactive protein (CRP), interleukin-6 (IL-6), lactate dehydrogenase (LDH), D-dimer, ferritin, and CT thorax were done within 24h of admission before being initiated on any anti-COVID-19 therapy. CTSS was calculated by visual assessment and categorized into three severity categories and was correlated with laboratory markers and overall survival (OS). Statistical analysis was done using John's Macintosh Project (JMP) 15.0.0 ver. 3.0.0 (Cary, North Carolina). Results The median age of the study population (n-298) was 59 years (24-95) with a male preponderance (61.41%, n=183). The 15 and 30-day survivals were 67.64% and 59.90%, respectively. CTSS did not correlate with age, gender, time from vaccination, symptoms, or comorbidities but had a significant though weak correlation with LDH (p=0.009), D-dimer (p=0.006), and NLR (p=0.019). Comparing demographic and laboratory aspects using CT severity categories, only NLR (p=0.0146) and D-dimer (p=0.0006) had significant differences. The 15d-OS of mild, moderate, and severe CT categories were 88.62%, 70.39%, and 52.62%, respectively, while 30d-OS of three categories were 59.08%, 63.96%, and 49.12%, respectively. Conclusion Among hospitalized severe COVID-19 patients with hypoxemia at admission, CT severity categories correlate well with outcomes but not inflammatory markers at admission.

2.
Sci Transl Med ; 14(645): eabm2311, 2022 05 18.
Article in English | MEDLINE | ID: covidwho-1765074

ABSTRACT

The successful development of several coronavirus disease 2019 (COVID-19) vaccines has substantially reduced morbidity and mortality in regions of the world where the vaccines have been deployed. However, in the wake of the emergence of viral variants that are able to evade vaccine-induced neutralizing antibodies, real-world vaccine efficacy has begun to show differences across the two approved mRNA platforms, BNT162b2 and mRNA-1273; these findings suggest that subtle variation in immune responses induced by the BNT162b2 and mRNA-1273 vaccines may confer differential protection. Given our emerging appreciation for the importance of additional antibody functions beyond neutralization, we profiled the postboost binding and functional capacity of humoral immune responses induced by the BNT162b2 and mRNA-1273 vaccines in a cohort of hospital staff. Both vaccines induced robust humoral immune responses to wild-type severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to variants of concern. However, differences emerged across epitope-specific responses, with higher concentrations of receptor binding domain (RBD)- and N-terminal domain-specific IgA observed in recipients of mRNA-1273. Antibodies eliciting neutrophil phagocytosis and natural killer cell activation were also increased in mRNA-1273 vaccine recipients as compared to BNT162b2 recipients. RBD-specific antibody depletion highlighted the different roles of non-RBD-specific antibody effector functions induced across the mRNA vaccines. These data provide insights into potential differences in protective immunity conferred by these vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic , mRNA Vaccines
3.
Neurol India ; 70(1): 122-126, 2022.
Article in English | MEDLINE | ID: covidwho-1726260

ABSTRACT

Background: The COVID-19 pandemic has put the entire medical fraternity into a very challenging and demanding situation. Along with always being at the risk of COVID infection, healthcare workers (HCWs) are also facing neurological problems due to long working hours in personal protective equipment (PPE). These symptoms and their characteristics need to be observed and studied in-depth to understand the problems experienced by HCWs and to design new solutions to overcome such problems. Objectives: This study intends to evaluate the various neurological manifestations among the HCWs wearing PPE for prolonged periods. Materials and Methods: We conducted a questionnaire-based cross-sectional study at a Covid care center from western India from April 20 to June 01, 2021 by using a self-administered web-based questionnaire. A total of 256 HCWs were surveyed. The de-identified data were analyzed using JMP 15.0.0. Results: Among a total of 256 HCWs surveyed for this study, the majority (58.6%) were aged 24-35 years, with a male preponderance (65.62%, n = 168). Participants included doctors (41%), nurses (35%), paramedical staff (22%), and housekeeping staff (1%). The symptoms encountered among the HCWs wearing the PPE were headache, classified further as donning headache in 112 (44.98%), doffing headache in 56 (26.24%), slowed mentation in 48 (21.05%), and excessive sleepiness in 86 (38.74%), which affected their work performance. The age of the HCWs had a significant correlation with all the symptoms. Conclusion: Headache, slowed mentation, and excessive sleepiness was encountered among the HCWs wearing PPE, which depended upon the duration of PPE usage. The most common symptom was headache, which was of moderate to severe intensity.


Subject(s)
COVID-19 , Personal Protective Equipment , Adult , Cross-Sectional Studies , Headache/epidemiology , Headache/etiology , Health Personnel , Humans , Male , Pandemics , Personal Protective Equipment/adverse effects , SARS-CoV-2 , Surveys and Questionnaires , Young Adult
4.
PLoS Biol ; 20(2): e3001531, 2022 02.
Article in English | MEDLINE | ID: covidwho-1686076

ABSTRACT

Identifying the potential for SARS-CoV-2 reinfection is crucial for understanding possible long-term epidemic dynamics. We analysed longitudinal PCR and serological testing data from a prospective cohort of 4,411 United States employees in 4 states between April 2020 and February 2021. We conducted a multivariable logistic regression investigating the association between baseline serological status and subsequent PCR test result in order to calculate an odds ratio for reinfection. We estimated an odds ratio for reinfection ranging from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to 1.1), implying that the presence of SARS-CoV-2 antibodies at baseline is associated with around 72% to 86% reduced odds of a subsequent PCR positive test based on our point estimates. This suggests that primary infection with SARS-CoV-2 provides protection against reinfection in the majority of individuals, at least over a 6-month time period. We also highlight 2 major sources of bias and uncertainty to be considered when estimating the relative risk of reinfection, confounders and the choice of baseline time point, and show how to account for both in reinfection analysis.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Reinfection/immunology , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Humans , Logistic Models , Middle Aged , Polymerase Chain Reaction , Prospective Studies , Reinfection/prevention & control , SARS-CoV-2/immunology , Seroepidemiologic Studies , Time Factors , United States/epidemiology , Workplace/statistics & numerical data , Young Adult
5.
mBio ; : e0214121, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1650754

ABSTRACT

As public health guidelines throughout the world have relaxed in response to vaccination campaigns against SARS-CoV-2, it is likely that SARS-CoV-2 will remain endemic, fueled by the rise of more infectious SARS-CoV-2 variants. Moreover, in the setting of waning natural and vaccine immunity, reinfections have emerged across the globe, even among previously infected and vaccinated individuals. As such, the ability to detect reexposure to and reinfection by SARS-CoV-2 is a key component for global protection against this virus and, more importantly, against the potential emergence of vaccine escape mutations. Accordingly, there is a strong and continued need for the development and deployment of simple methods to detect emerging hot spots of reinfection to inform targeted pandemic response and containment, including targeted and specific deployment of vaccine booster campaigns. In this study, we identify simple, rapid immune biomarkers of reinfection in rhesus macaques, including IgG3 antibody levels against nucleocapsid and FcγR2A receptor binding activity of anti-RBD antibodies, that are recapitulated in human reinfection cases. As such, this cross-species analysis underscores the potential utility of simple antibody titers and function as price-effective and scalable markers of reinfection to provide increased resolution and resilience against new outbreaks. IMPORTANCE As public health and social distancing guidelines loosen in the setting of waning global natural and vaccine immunity, a deeper understanding of the immunological response to reexposure and reinfection to this highly contagious pathogen is necessary to maintain public health. Viral sequencing analysis provides a robust but unrealistic means to monitor reinfection globally. The identification of scalable pathogen-specific biomarkers of reexposure and reinfection, however, could significantly accelerate our capacity to monitor the spread of the virus through naive and experienced hosts, providing key insights into mechanisms of disease attenuation. Using a nonhuman primate model of controlled SARS-CoV-2 reexposure, we deeply probed the humoral immune response following rechallenge with various doses of viral inocula. We identified virus-specific humoral biomarkers of reinfection, with significant increases in antibody titer and function upon rechallenge across a range of humoral features, including IgG1 to the receptor binding domain of the spike protein of SARS-CoV-2 (RBD), IgG3 to the nucleocapsid protein (N), and FcγR2A receptor binding to anti-RBD antibodies. These features not only differentiated primary infection from reexposure and reinfection in monkeys but also were recapitulated in a sequencing-confirmed reinfection patient and in a cohort of putatively reinfected humans that evolved a PCR-positive test in spite of preexisting seropositivity. As such, this cross-species analysis using a controlled primate model and human cohorts reveals increases in antibody titers as promising cross-validated serological markers of reinfection and reexposure.

6.
Immunity ; 55(2): 355-365.e4, 2022 02 08.
Article in English | MEDLINE | ID: covidwho-1611777

ABSTRACT

SARS-CoV-2 mRNA vaccines confer robust protection against COVID-19, but the emergence of variants has generated concerns regarding the protective efficacy of the currently approved vaccines, which lose neutralizing potency against some variants. Emerging data suggest that antibody functions beyond neutralization may contribute to protection from the disease, but little is known about SARS-CoV-2 antibody effector functions. Here, we profiled the binding and functional capacity of convalescent antibodies and Moderna mRNA-1273 COVID-19 vaccine-induced antibodies across SARS-CoV-2 variants of concern (VOCs). Although the neutralizing responses to VOCs decreased in both groups, the Fc-mediated responses were distinct. In convalescent individuals, although antibodies exhibited robust binding to VOCs, they showed compromised interactions with Fc-receptors. Conversely, vaccine-induced antibodies also bound robustly to VOCs but continued to interact with Fc-receptors and mediate antibody effector functions. These data point to a resilience in the mRNA-vaccine-induced humoral immune response that may continue to offer protection from SARS-CoV-2 VOCs independent of neutralization.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Viral/immunology , COVID-19/metabolism , COVID-19/prevention & control , Receptors, Fc/metabolism , SARS-CoV-2/immunology , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adult , Antibodies, Neutralizing/immunology , Cross Reactions/immunology , Female , Host-Pathogen Interactions , Humans , Male , Middle Aged , Neutralization Tests , Protein Binding , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
7.
Viruses ; 13(11)2021 11 06.
Article in English | MEDLINE | ID: covidwho-1502534

ABSTRACT

Obesity is a key correlate of severe SARS-CoV-2 outcomes while the role of obesity on risk of SARS-CoV-2 infection, symptom phenotype, and immune response remain poorly defined. We examined data from a prospective SARS-CoV-2 cohort study to address these questions. Serostatus, body mass index, demographics, comorbidities, and prior COVID-19 compatible symptoms were assessed at baseline and serostatus and symptoms monthly thereafter. SARS-CoV-2 immunoassays included an IgG ELISA targeting the spike RBD, multiarray Luminex targeting 20 viral antigens, pseudovirus neutralization, and T cell ELISPOT assays. Our results from a large prospective SARS-CoV-2 cohort study indicate symptom phenotype is strongly influenced by obesity among younger but not older age groups; we did not identify evidence to suggest obese individuals are at higher risk of SARS-CoV-2 infection; and remarkably homogenous immune activity across BMI categories suggests immune protection across these groups may be similar.


Subject(s)
Antibodies, Viral/blood , COVID-19/complications , COVID-19/immunology , Obesity/complications , Obesity/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Age Factors , Body Mass Index , COVID-19/epidemiology , COVID-19/physiopathology , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Risk Factors , SARS-CoV-2/immunology , Young Adult
8.
Sci Immunol ; 6(64): eabj2901, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1470496

ABSTRACT

The introduction of vaccines has inspired hope in the battle against SARS-CoV-2. However, the emergence of viral variants, in the absence of potent antivirals, has left the world struggling with the uncertain nature of this disease. Antibodies currently represent the strongest correlate of immunity against SARS-CoV-2, thus we profiled the earliest humoral signatures in a large cohort of acutely ill (survivors and nonsurvivors) and mild or asymptomatic individuals with COVID-19. Although a SARS-CoV-2­specific immune response evolved rapidly in survivors of COVID-19, nonsurvivors exhibited blunted and delayed humoral immune evolution, particularly with respect to S2-specific antibodies. Given the conservation of S2 across ß-coronaviruses, we found that the early development of SARS-CoV-2­specific immunity occurred in tandem with preexisting common ß-coronavirus OC43 humoral immunity in survivors, which was also selectively expanded in individuals that develop a paucisymptomatic infection. These data point to the importance of cross-coronavirus immunity as a correlate of protection against COVID-19.


Subject(s)
COVID-19/immunology , Cross Reactions , Immunity, Humoral , SARS-CoV-2/immunology , Adolescent , Cohort Studies , Coronavirus OC43, Human/immunology , Disease Progression , Humans , Immunoglobulin Class Switching , Receptors, Fc/immunology , Spike Glycoprotein, Coronavirus/immunology , Survivors , Young Adult
9.
Aerosp Med Hum Perform ; 92(7): 597-602, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1403456

ABSTRACT

BACKGROUND: The National Aeronautics and Space Administration (NASA) Flight Crew Health Stabilization Program (HSP) was historically implemented to minimize infectious disease transmission to astronauts in the immediate prelaunch period. The first ever commercial application and adaptation of the NASA HSP was implemented during the Crew Demo-2 mission in the time of the Coronavirus disease 2019 (COVID-19) pandemic. This article details and discusses the first commercial implementation and adaptation of the HSP prior to the Crew Demo-2 launch.METHODS: This is a retrospective descriptive analysis of the application of NASA disease prevention protocols for human spaceflight during the COVID-19 pandemic. In the context of the pandemic, extra precautions added to the HSP included daily symptom surveys completed by Primary Contacts of the crew, COVID-19 RT-PCR testing, and improved quarantine protocols.RESULTS: Of the 91 SpaceX Primary Contacts who completed a total of 2720 daily symptom surveys prior to launch, 22 individuals (24.2) and 198 surveys (7.3) returned positive for potential symptoms of COVID-19. Two individuals were removed due to symptoms indistinguishable from COVID-19. Through this survey, systematic quarantine, and PCR testing, the Crew Demo-2 mission was successful with no known infectious diseases transmitted.CONCLUSIONS: Overall, the commercial implementation of the NASA Health Stabilization Program by SpaceX with adjustments required during the COVID-19 pandemic was a success, with protocols allowing identification and removal of potentially infectious persons from the program. The principles of the HSP may provide an adequate infectious disease playbook for commercial spaceflight operations going forward.Petersen E, Pattarini JM, Mulcahy RA, Beger SB, Mitchell MR, Hu YD, Middleton KN, Frazier W, Mormann B, Esparza H, Asadi A, Musk ER, Alter G, Nilles E, Menon AS. Adapting disease prevention protocols for human spaceflight during COVID-19. Aerosp Med Hum Perform. 2021; 92(7):597602.


Subject(s)
COVID-19 , Space Flight , Humans , Pandemics , Retrospective Studies , SARS-CoV-2
10.
Nat Commun ; 12(1): 1018, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1085426

ABSTRACT

Antibodies serve as biomarkers of infection, but if sustained can confer long-term immunity. Yet, for most clinically approved vaccines, binding antibody titers only serve as a surrogate of protection. Instead, the ability of vaccine induced antibodies to neutralize or mediate Fc-effector functions is mechanistically linked to protection. While evidence has begun to point to persisting antibody responses among SARS-CoV-2 infected individuals, cases of re-infection have begun to emerge, calling the protective nature of humoral immunity against this highly infectious pathogen into question. Using a community-based surveillance study, we aimed to define the relationship between titers and functional antibody activity to SARS-CoV-2 over time. Here we report significant heterogeneity, but limited decay, across antibody titers amongst 120 identified seroconverters, most of whom had asymptomatic infection. Notably, neutralization, Fc-function, and SARS-CoV-2 specific T cell responses were only observed in subjects that elicited RBD-specific antibody titers above a threshold. The findings point to a switch-like relationship between observed antibody titer and function, where a distinct threshold of activity-defined by the level of antibodies-is required to elicit vigorous humoral and cellular response. This response activity level may be essential for durable protection, potentially explaining why re-infections occur with SARS-CoV-2 and other common coronaviruses.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Viral Vaccines/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL